Journal Articles

  • [J018]: C.K.P. Vallabh, H. Zhang, D.S. Anderson, A.C. To, and X. Zhao (2024). "Melt pool width measurement in a multi-track, multi-layer laser powder bed fusion print using single-camera two-wavelength imaging pyrometry". The International Journal of Advanced Manufacturing Technologyhttps://doi.org/10.1007/s00170-024-13486-y

  • [J017]: T.J. Kolibaba, J.P. Killgore, B.W. Caplins, C.I. Higgins, U. Arp, C.C. Miller, D.L. Poster, Y. Zong, S. Broce, T. Wang, V. Talačka, J. Andersson, A. Davenport, M.A. Panzer, J.R. Tumbleston, J.M. Gonzalez, J. Huffstetler, B.R. Lund, K. Billerbeck, A.M. Clay, M.R. Fratarcangeli, H.J. Qi, D.H. Porcincula, L.B. Bezek, K. Kikuta, M.N. Pearlson, D.A. Walker, C.J. Long, E. Hasa, A. Aguirre-Soto, A. Celis-Guzman, D.E. Backman, R.L. Sridhar, K.A. Cavicchi, R.J. Viereckl, E. Tong, C.J. Hansen, D.M. Shah, C. Kinane, A. Pena-Francesch, C. Antonini, R. Chaudhary, G. Muraca, Y. Bensouda, Y. Zhang, and X. Zhao (2024). "Results of an Interlaboratory Study on the Working Curve in Vat Photopolymerization". Additive Manufacturinghttps://doi.org/10.1016/j.addma.2024.104082

  • [J016]: Zhang, Y., H. Zhang, and X. Zhao (2024). In-situ interferometric curing monitoring for digital light processing based vat photopolymerization additive manufacturing. Additive Manufacturing, 2024. 81 https://doi.org/10.1016/j.addma.2024.104001

  • [J015]: H. Zhang, Y. Zhang, X. Zhao (2024). Vat photopolymerization additive manufacturing process modeling: a thermal-chemical coupling approach informed by in-situ and ex-situ characterization data, Additive Manufacturing Letters 9. http://doi.org/10.1016/j.addlet.2024.100193

  • [J014]: Zhang, H., Vallabh, C.K.P., and Zhao, X. (2023). Influence of spattering on in-process layer surface roughness during laser powder bed fusion. Journal of Manufacturing Processes 104, 289-306. https://doi.org/10.1016/j.jmapro.2023.08.058

  • [J013]: Zhang, H., Vallabh, C.K.P., and Zhao, X. (2023). Machine learning enhanced high dynamic range fringe projection profilometry for in-situ layer-wise surface topography measurement during LPBF additive manufacturing. Precision Engineeringhttps://doi.org/10.1016/j.precisioneng.2023.06.015

  • [J012]: Zhang, H., Vallabh, C.K.P., and Zhao, X. (2022). Registration and fusion of large-scale melt pool temperature and morphology monitoring data demonstrated for surface topography prediction in LPBF. Additive Manufacturing, 103075. http://doi.org/10.1016/j.addma.2022.103075

  • [J011]: Vallabh, C.K.P., Sridar, S., Xiong, W., and Zhao, X. (2022). Predicting melt pool depth and grain length using multiple signatures from in-situ single camera two-wavelength imaging pyrometry for laser powder bed fusion. Journal of Materials Processing Technology 308, 117724. http://doi.org/10.1016/j.jmatprotec.2022.117724

  • [J010]:Vallabh, C.K.P., and Zhao, X. (2022). Melt pool temperature measurement and monitoring during laser powder bed fusion based additive manufacturing via single-camera two-wavelength imaging pyrometry (STWIP). Journal of Manufacturing Processes 79, 486-500. http://doi.org/10.1016/j.jmapro.2022.04.058

  • [J009]: Vallabh, C.K.P., Zhang, Y., and Zhao, X. (2022). In-situ ultrasonic monitoring for Vat Photopolymerization. Additive Manufacturing 55, 102801. https://doi.org/10.1016/j.addma.2022.102801

  • [J008]: Zhang, H., Vallabh, C.K.P., Xiong, Y., and Zhao, X. (2022). A systematic study and framework of fringe projection profilometry with improved measurement performance for in-situ LPBF process monitoring. Measurement 191, 110796.   https://doi.org/10.1016/j.measurement.2022.110796

  • [J007]: Vallabh, C.K.P. and X. Zhao. (2021). Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion. 3D Printing and Additive Manufacturinghttp://10.1089/3dp.2021.0060

  • [J006]: Vallabh, C.K.P., Xiong, Y., & Zhao, X. (2021). 3D printing of liquid metal EGaIn through laser induced forward transfer: A proof-of-concept studyManufacturing Letters, 28, 42-45.Elsevier BV. http://doi.org/10.1016/j.mfglet.2021.03.004.

  • [J005]: Zhao, X., & Rosen, D.W. (2018). An implementation of real-time feedback control of cured part height in Exposure Controlled Projection Lithography with in-situ interferometric measurement feedbackAdditive Manufacturing, 23, 253-263.Elsevier BV. http://doi.org/10.1016/j.addma.2018.07.016.

  • [J004]: Zhao, X., & Rosen, D.W. (2017). Experimental validation and characterization of a real-time metrology system for photopolymerization-based stereolithographic additive manufacturing processInternational Journal of Advanced Manufacturing Technology, 91(1-4), 1255-1273.Springer Science and Business Media LLC. http://doi.org/10.1007/s00170-016-9844-1.

  • [J003]: Zhao, X., & Rosen, D.W. (2017). A data mining approach in real-time measurement for polymer additive manufacturing process with exposure controlled projection lithographyJournal of Manufacturing Systems, 43, 271-286.Elsevier BV. http://doi.org/10.1016/j.jmsy.2017.01.005.

  • [J002]: Zhao, X., & Rosen, D.W. (2017). Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithmMeasurement Science and Technology, 28(1), 015001.IOP Publishing. http://doi.org/10.1088/0957-0233/28/1/015001.

  • [J001]:  Zhao, X., & Rosen, D.W. (2016). Simulation study on evolutionary cycle to cycle time control of exposure controlled projection lithographyRapid Prototyping Journal, 22(3), 456-464.Emerald. http://doi.org/10.1108/rpj-01-2015-0008.